Answer on Question \#43815 - Math - Linear Algebra

Let A be an $n \times n$ matrix. Then Show that the set, $U=\{u \in R n: A u=-3 u n\}$ is a Subspace of $R n$.

Solution.

Let V be a vector space over field K. Suppose that W is a subset of V. If W is a vector space itself (which means that it is closed under operations of addition and scalar multiplication), with the same vector space operations as V has, then W is a subspace of V. Then W is a subspace of V if and only if W satisfies the following condition:

If $x \in W$ and $y \in W$ then $a x+b y \in W$ for all $a, b \in K$.

In our case $V=R^{n}, \mathrm{~W}=\mathrm{U}$ and $\mathrm{K}=\mathrm{R}$. Let's verify the previous condition
Let $x \in U$ and $y \in U$ then $A x=-3 n x$ and $A y=-3 n y$.

Let's consider the combination $u=a x+b y$
$A u=A(a x+b y)=a A x+b A y=a(-3 n x)+b(-3 n y)=-3(a x+b y) n=-3 u n$, so we get
$A u=-3 u n$, hence U is a subspace of R^{n}.

