Answer on Question \#43786, Math, Algebra

Andrew has been doing archery for a number of years. While training, he noticed that when he draws the arrow, the bow is in the shape of a conic section. Determine the equation of this conic section given that the distance between his hands when he draws the arrow is 0.5 m and that the cor is attached to the bow at points ($-2,-$) and ($-2,4$). In addition, in a Cartesian coordinate system, his bow is open to the right.
Remark. The part of statement is missed ("attached to the bow at points ($-2,-$?) and $(-2,4)^{\prime}$ "). We suppose that the y-coordinate of the first vertex equals y_{0}. We also suppose the length unit vector in this Cartesian coordinate system has length 0.1 m .

Solution.

The conic section of the bow due to Euler Bernoulli beam theory will be parabola (simply supported beam with central load). The midpoint of segment which connects $\left(-2, y_{0}\right)$ and $(-2,4)$ is the location of the first hand. The first hand coordinates are $\left(\frac{-2-2}{2}, \frac{y_{0}+4}{2}\right)=\left(-2, \frac{y_{0}+4}{2}\right)$. The second hand is located in the vertex of the parabola and has coordinates $\left(-2+5, \frac{y_{0}+4}{2}\right)=\left(3, \frac{y_{0}+4}{2}\right)$, as the distance between two hands is 0.5 m and bow is open to the right. Then the equation of the parabola is

$$
x=k\left(y-\frac{y_{0}+4}{2}\right)^{2}+3
$$

If substitute point $(-2,4)$ in it, we will obtain

$$
-2=k\left(\frac{y_{0}-4}{2}\right)^{2}+3
$$

or

$$
k=-\frac{20}{\left(y_{0}-4\right)^{2}}
$$

Therefore the equation is

$$
x=-\frac{20}{\left(y_{0}-4\right)^{2}}\left(y-\frac{y_{0}+4}{2}\right)^{2}+3
$$

Answer: $x=-\frac{20}{\left(y_{0}-4\right)^{2}}\left(y-\frac{y_{0}+4}{2}\right)^{2}+3$.

