Answer on Question \#43725-Math-Statistics and Probability

Heights of fathers and sons are given in centimeters.
Height of father (x)

150152155157160161164166

Height of son (y)

154156158159160162161164

Find the line of regression and calculate the expected average height of the son when the height of the father is 154 cm .

Solution

Let 160 and 159 be assumed means of x and y. Using the given data, we get the following table:

x	y	$X=x-160$	$Y=y-159$	X^{2}	Y^{2}	$X Y$
150	154	-10	-5	100	25	50
152	156	-8	-3	64	9	24
155	158	-5	-1	25	1	5
157	159	-3	0	9	0	0
160	160	0	1	0	9	0
161	162	161	4	2	16	4
164	164	$\sum X=-15$	$\sum Y=2$	$\sum X^{2}=251$	$\sum Y^{2}=74$	$\sum X Y=120$
166	$\bar{x}=160+\frac{\sum X}{n}=160-\frac{15}{8}=158.13$					

Since regression coefficients are independent of change of origin, we have regression coefficient of y on x.

$$
b_{y x}=b_{Y X}=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}=\frac{8 \cdot 120-(-15) \cdot 2}{8 \cdot 251-(-15)^{2}}=0.56
$$

Equation of a line of regression of y on x is

$$
\begin{gathered}
y-\bar{y}=b_{y x}(x-\bar{x}) \\
y-159.25=0.56(x-158.13) \\
y=0.56 x+70.697
\end{gathered}
$$

When $x=154$

$$
y=0.56(154)+70.697=156.937
$$

Answer: $y=0.56 x+70.697 ; y=156.937$.

