

Answer on Question #43717 – Math - Algebra

If $(m+1)$ th term of an AP is twice the $(n+1)$ th term, prove that $(3m+1)$ th term is twice the $(m+n+1)$ th term.

Solution

By definition of arithmetical progression, $(m+1)$ th and $(n+1)$ th terms are

$a_{m+1} = a_1 + dm$, $a_{n+1} = a_1 + dn$ correspondingly.

By statement of the problem,

$a_{m+1} = 2a_{n+1}$, then

$a_1 + dm = 2(a_1 + dn)$, $a_1 = d(m - 2n)$.

Calculate $(3m+1)$ th term:

$$a_{3m+1} = a_1 + 3md = dm - 2dn + 3md = 4md - 2dn. \quad (1)$$

Method 1

Calculate

$$2a_{m+n+1} = 2(a_1 + md + nd) = 2a_1 + 2md + 2nd = 2md - 4nd + 2md + 2nd = 4md - 2nd \quad (2)$$

Right-hand sides of (1) and (2) are the same, therefore left-hand sides of (1) and (2) are identical, that is, $a_{3m+1} = 2a_{m+n+1}$.

Method 2

We seek such q that

$$a_{3m+1} = 2a_q \quad (3)$$

Taking into account (1), rewrite (3) as follows

$$\begin{aligned} 4md - 2dn &= 2a_q \\ 4md - 2dn &= 2(a_1 + (q-1)d) \\ 2md - dn &= a_1 + (q-1)d \\ 2md - dn &= md - 2dn + (q-1)d \\ md + dn &= (q-1)d \\ q &= m + n + 1 \end{aligned}$$

We proved that (3) holds true when $q = m + n + 1$. It means that $a_{3m+1} = 2a_{m+n+1}$.