Answer on Question \#43717 - Math - Algebra

If $(m+1)$ th term of an AP is twice the $(n+1)$ th term, prove that $(3 m+1)$ th term is twice the $(m+n+1)$ th term.

Solution

By definition of arithmetical progression, $(m+1)$ th and ($n+1$)th terms are
$a_{m+1}=a_{1}+d m, a_{n+1}=a_{1}+d n$ correspondingly.
By statement of the problem,

$$
a_{m+1}=2 a_{n+1}, \text { then }
$$

$a_{1}+d m=2\left(a_{1}+d n\right), a_{1}=d(m-2 n)$.
Calculate $(3 m+1)$ th term:
$a_{3 m+1}=a_{1}+3 m d=d m-2 d n+3 m d=4 m d-2 d n$.

Method 1

Calculate
$2 a_{m+n+1}=2\left(a_{1}+m d+n d\right)=2 a_{1}+2 m d+2 n d=2 m d-4 n d+2 m d+2 n d=4 m d-2 n d$
Right-hand sides of (1) and (2) are the same, therefore left-hand sides of (1) and (2) are identical, that is, $a_{3 m+1}=2 a_{m+n+1}$.

Method 2

We seek such q that

$$
\begin{equation*}
a_{3 m+1}=2 a_{q} \tag{3}
\end{equation*}
$$

Taking into account (1), rewrite (3) as follows

$$
\begin{gathered}
4 m d-2 d n=2 a_{q} \\
4 m d-2 d n=2\left(a_{1}+(q-1) d\right) \\
2 m d-d n=a_{1}+(q-1) d \\
2 m d-d n=m d-2 d n+(q-1) d \\
m d+d n=(q-1) d \\
q=m+n+1
\end{gathered}
$$

We proved that (3) holds true when $q=m+n+1$. It means that $a_{3 m+1}=2 a_{m+n+1}$.

