In a sample of 49 adolescents who served as the subjects in an immunologic study, one variable of interest was the diameter of a skin test reaction to an allergen. The sample mean and standard deviation were 21 and 11 mm erythema, respectively.
a. Use the Z or t-distribution? Why?
b. One-sided or two-sided test? Why?
c. Can it be concluded from these data that the population mean is less than 24 mm erythema?

Solution.

x is diameter of skin test reaction to an antigen. Population is all the adolescents. $x \sim$ some distribution (μ, σ). Distribution is not known (μ and σ are not known).
$H_{0}: \mu=30 \mathrm{~mm} ; H_{1}: \mu<30 \mathrm{~mm}$.
The alternative hypothesis contains "the population mean is less than", so it is One-sided test.
Sample:

$$
n=49(\text { a large sample }), \bar{x}=21, s=11 \mathrm{~mm} .
$$

Test statistic: Since distribution is not known and $n=49 \geq 30$, sample size is large, we apply central limit theorem. Hence $\frac{\bar{x}-\mu}{s / \sqrt{n}}$ has an approximate standard normal distribution (Z-distribution).

$$
z_{\text {test }}=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{21-24}{\frac{11}{\sqrt{49}}}=-1.91
$$

Since the alternative hypothesis is left-tailed, the p-value is area to the left of -1.91 .

$$
\mathrm{p}-\text { value }=0.0281
$$

We can conclude from these data that the population mean is less than 24 mm erythema with Significance Level $\alpha>0.0281$.

Answer: a. Z-distribution; b. One-sided test; c. Yes, if Significance Level $\alpha>\mathbf{0 . 0 2 8 1}$.

