Answer on Question \#43546 - Math - Algebra

Prove that $\sin \theta=(x+P) / x$ real value of x are possible when $P \leq 1 / 4$.

Solution:

$$
\sin \theta=\frac{x+P}{x}=\frac{x}{x}+\frac{P}{x}=1+\frac{P}{x}
$$

Maximum value of $\sin \theta$ is 1 , hence maximum value of parameter P :

$$
\begin{gathered}
1+\frac{\mathrm{P}}{\mathrm{x}}=1 \\
\frac{\mathrm{P}}{\mathrm{x}}=0 \\
\mathrm{P}=0
\end{gathered}
$$

Minimum value of $\sin \theta$ is -1 , hence minimum value of parameter P :

$$
\begin{gathered}
1+\frac{\mathrm{P}}{\mathrm{x}}=-1 \\
\frac{\mathrm{P}}{\mathrm{x}}=2
\end{gathered}
$$

Hence, condition that P must be $P \leq \frac{1}{4}$ is not true (for all x from R): maximum value of P is zero, and minimum is undefined (if we consider that " x " is from R).

