Answer on Question \#43545, Math, Other

Task: Prove that in any parallelogram the sum of the squares on the diagonals is twice the sum of the squares on two adjacent sides.

Answer:

We have parallelogram $A B C D$ with diagonals $A C$ and $B D$. Using the Law of Cosines:

$$
\triangle A B C: A C^{2}=A B^{2}+B C^{2}-2 \cdot A B \cdot B C \cdot \cos \angle B
$$

In $\triangle A B D: B D^{2}=A B^{2}+A D^{2}-2 \cdot A B \cdot A D \cdot \cos \angle A ;$

But $A D=B C ; \angle A=180^{\circ}-\angle B$.

$$
B D^{2}=A B^{2}+B C^{2}-2 \cdot A B \cdot B C \cdot \cos \left(180^{\circ}-\angle B\right) \Rightarrow
$$

So we have $B D^{2}=A B^{2}+B C^{2}+2 \cdot A B \cdot B C \cdot \cos \angle B ; \Rightarrow$

$$
A C^{2}+B D^{2}=2\left(A B^{2}+B C^{2}\right)
$$

