Answer on Question \#43544 - Math - Geometry

Prove that in a parallelepiped the sum of the diagonals is equal to the sum of the squares on the edges.

Proof.

A parallelepiped is a three-dimensional geometric solid with six faces that are parallelograms.

Parallelograms which is composed of a parallelepiped, called its faces, their side - ribs, and the vertices of parallelograms - tops the parallelepiped.

Based on the definition of a parallelepiped, we know that the sides are parallelograms, and hence in the proof will be guided with parallelogram properties.

We solve the auxiliary problem: we establish a relationship between the sides of parallelogram and its diagonals.

We proceed from the fact that the diagonal cross-section parallelepiped - parallelogram.

For parallelogram true each of the following statements:

- The opposing sides are equal in pairs;
- Opposite angles are equal;
- Diagonals intersect and bisect the intersection point;
- The opposing sides are parallel;
- The sum of angles adjacent to the one side, is 180°
- Each diagonal divides the parallelogram into two congruent triangles.

Consider the following parallelogram ABCD.

We have $\mathrm{AC}=\mathrm{d}_{1}, \mathrm{DB}=\mathrm{d}_{2}, \mathrm{AD}=\mathrm{BC}=\mathrm{a}, \mathrm{AB}=\mathrm{DC}=\mathrm{b}, \angle \mathrm{DAB}=\alpha$
Then $\angle A D C=180^{\circ}-\alpha$.
For triangle $\triangle \mathrm{DAB}$ we note the law of cosines.

$$
d_{2}^{2}=a^{2}+b^{2}-2 a b \cdot \cos (\alpha)
$$

Then we consider the triangle $\triangle A D C$ and write for them the law of cosines.

$$
d_{1}^{2}=a^{2}+b^{2}-2 a b \cdot \cos \left(180^{\circ}-\alpha\right)=a^{2}+b^{2}+2 a b \cdot \cos (\alpha)
$$

Adding these equations, we obtain:

$$
d_{1}^{2}+d_{2}^{2}=a^{2}+b^{2}+2 a b \cdot \cos (\alpha)+a^{2}+b^{2}-2 a b \cdot \cos (\alpha)
$$

Simplify the obtained equation.

$$
\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}=2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}
$$

Consider the parallelepiped $A A_{1} D D_{1} C C_{1} B B_{1}$ to prove statement from the condition of the given task.

Let the edges of the parallelepiped are a, b, c.

For the plane $\mathrm{DD}_{1} \mathrm{~B}_{1} \mathrm{~B}$ write the formula that we determined of the sum of the diagonals.

$$
\mathrm{D}_{1} \mathrm{~B}^{2}+\mathrm{DB}_{1}{ }^{2}=2 \mathrm{DB}^{2}+2 \mathrm{BB}_{1}{ }^{2}
$$

Then we consider the plane $\mathrm{AA}_{1} \mathrm{C}_{1} \mathrm{C}$ write the formula that we determined of the sum of the diagonals.

$$
\mathrm{A}_{1} \mathrm{C}^{2}+\mathrm{AC}_{1}{ }^{2}=2 \mathrm{AC}^{2}+2 \mathrm{AA}_{1}{ }^{2}
$$

Now we add obtained earlier equalities:

$$
\mathrm{D}_{1} \mathrm{~B}^{2}+\mathrm{DB}_{1}^{2}+\mathrm{A}_{1} \mathrm{C}^{2}+\mathrm{AC}_{1}^{2}=2 \mathrm{DB}^{2}+2 \mathrm{BB}_{1}^{2}+2 \mathrm{AC}^{2}+2 \mathrm{AA}_{1}^{2}
$$

Now, to solve this equation we make the change of the sides.
Accordance with the terms of the problem, we noted the following.
$\mathrm{DB}=\mathrm{d}_{2}$ and $\mathrm{AC}=\mathrm{d}_{1}$
We have already identified that $\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}=2 \mathrm{a}^{2}+2 \mathrm{c}^{2}$.
Now we can rewrite the equation.

$$
\begin{gathered}
\mathrm{D}_{1} \mathrm{~B}^{2}+\mathrm{DB}_{1}^{2}+\mathrm{A}_{1} \mathrm{C}^{2}+\mathrm{AC}_{1}^{2}=2 \mathrm{DB}^{2}+2 \mathrm{BB}_{1}^{2}+2 \mathrm{AC}^{2}+2 \mathrm{AA}_{1}{ }^{2} \\
\\
=2\left(\mathrm{DB}^{2}+\mathrm{AC}^{2}\right)+2 \mathrm{BB}_{1}^{2}+2 \mathrm{AA}_{1}^{2}
\end{gathered}
$$

According to the condition of the task we also know that $\mathrm{BB}_{1}=\mathrm{AA}_{1}=\mathrm{b}$.
So, we can substitute into the equation.

$$
\mathrm{D}_{1} \mathrm{~B}^{2}+\mathrm{DB}_{1}{ }^{2}+\mathrm{A}_{1} \mathrm{C}^{2}+\mathrm{AC}_{1}^{2}=2\left(2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}\right)+2 \mathrm{~b}^{2}+2 \mathrm{~b}^{2}
$$

Simplify and combine like terms on the right side of the equation.

$$
\mathrm{D}_{1} \mathrm{~B}^{2}+\mathrm{DB}_{1}{ }^{2}+\mathrm{A}_{1} \mathrm{C}^{2}+\mathrm{AC}_{1}^{2}=2\left(2 \mathrm{a}^{2}+2 \mathrm{c}^{2}\right)+2 \mathrm{~b}^{2}+2 \mathrm{~b}^{2}=4 \mathrm{a}^{2}+4 \mathrm{c}^{2}+4 \mathrm{~b}^{2}
$$

Thus we have the sum of squares of all the edges of the parallelepiped
Finally we can write the proof.
$\mathrm{D}_{1} \mathrm{~B}^{2}+\mathrm{DB}_{1}{ }^{2}+\mathrm{A}_{1} \mathrm{C}^{2}+\mathrm{AC}_{1}{ }^{2}=4 \mathrm{a}^{2}+4 \mathrm{c}^{2}+4 \mathrm{~b}^{2}=4\left(\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{b}^{2}\right)$.

