Question \#43541, Math, Vector Calculus

Find the vector of magnitude $3 \sqrt{2}$ which lies in zx plane and is at right angle to the vector $2 \vec{\imath}+\vec{\jmath}+$ $2 \vec{k}$.

Solution.

We must find unknowing vector, wich lies in ZX plane.

Let \vec{a} is the unknown vector and this vector lies in ZX plain. It can be written as:

$$
\vec{a}=x \cdot \vec{\imath}+0 \cdot \vec{\jmath}+z \cdot \vec{k}
$$

where x and z some numbers. The y -coordinate of this vector is 0 because \vec{a} lies in ZX plane.

Vector \vec{a} is at right angle to the vector $2 \vec{\imath}+\vec{\jmath}+2 \vec{k}$, this means that

$$
\vec{a} \cdot(2 \vec{\imath}+\vec{\jmath}+2 \vec{k})=0
$$

We know that $|\vec{a}|=3 \sqrt{2}$ then we can write the system of equations:

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ | \vec { a } | = 3 \sqrt { 2 } , } \\
{ \vec { a } \cdot (\begin{array} { c }
{ 2 \vec { \imath } + \vec { \jmath } + 2 \vec { k } }
\end{array}) = 0 ; }
\end{array} \rightarrow \left\{\begin{array}{c}
\sqrt{x^{2}+z^{2}}=3 \sqrt{2,} \\
x \cdot 2+0 \cdot 1+z \cdot 2=0 ;
\end{array}\right.\right. \\
& \rightarrow\left\{\begin{array}{c}
x^{2}+z^{2}=18, \\
2 x+2 z=0 ;
\end{array}\right. \\
& \Rightarrow \begin{array}{c}
x^{2}+z^{2}=18, \\
x+z=0 ;
\end{array} \rightarrow\left\{\begin{array}{c}
x^{2}+z^{2}=18, \\
z=-x ;
\end{array} \rightarrow x^{2}+(-x)^{2}=18, \rightarrow 2 x^{2}=18, \rightarrow\right. \\
& \rightarrow x^{2}=9 \rightarrow\left\{\begin{array}{l}
x=3, z=-3, \\
x=-3, z=3 ;
\end{array}\right.
\end{aligned}
$$

check out these answers:

$$
\begin{aligned}
& \text { a) }\left\{\begin{array}{c}
\sqrt{3^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}, \\
(3 \vec{\imath}-3 \vec{k}) \cdot(2 \vec{\imath}+\vec{\jmath}+2 \vec{k})=3 \cdot 2-3 \cdot 2=6-6=0
\end{array} \Rightarrow\right. \text { it`s Ok } \\
& \text { b) }\left\{\begin{array}{c}
\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}, \\
(-3 \vec{\imath}+3 \vec{k}) \cdot(2 \vec{\imath}+\vec{\jmath}+2 \vec{k})=-3 \cdot 2+3 \cdot 2=-6+6=0
\end{array} \Rightarrow\right. \text { it`s Ok }
\end{aligned}
$$

Answer:

$$
\vec{a}= \pm 3 \vec{\imath} \mp 3 \vec{k}=\begin{gathered}
3 \vec{\imath}-3 \vec{k} \\
-3 \vec{\imath}+3 \vec{k}
\end{gathered}
$$

