Answer on Question #43538 – Math - Analytic Geometry

Any point X inside triangle DEF is joined to its vertices. From a point P on DX, PQ is drawn parallel to DE, meeting XE at Q and QR is drawn parallel to EF, meeting XF in R. Prove that PR is parallel to DF.

Solution:

Let $\overrightarrow{XD} = \vec{a}$, $\overrightarrow{XE} = \vec{b}$, $\overrightarrow{XF} = \vec{c}$. Then $\overrightarrow{DE} = \vec{b} - \vec{a}$, $\overrightarrow{EF} = \vec{c} - \vec{b}$, $\overrightarrow{FD} = \vec{a} - \vec{c}$. Suppose that $\overrightarrow{XP} = \lambda \overrightarrow{XD} = \lambda \vec{a}$. The vector \overrightarrow{PQ} is colliner to \overrightarrow{DE} , so $\overrightarrow{PQ} = \mu_1 \overrightarrow{DE} = \mu_1 (\vec{b} - \vec{a})$. Then $\overrightarrow{XQ} = \overrightarrow{XP} + \overrightarrow{PQ} = (\lambda - \mu_1)\vec{a} + \mu_1\vec{b}$. On the other hand $\overrightarrow{XQ} = \mu_2 \overrightarrow{XE} = \mu_2\vec{b}$, so $(\mu_1 - \lambda)\vec{a} + \mu_1\vec{b} = \mu_2\vec{b}$. The vectors \vec{a} and \vec{b} are linear independent, so $\mu_1 = \lambda$, $\mu_2 = \mu_1 = \lambda$ and $\overrightarrow{XQ} = \lambda\vec{b}$. The vector \overrightarrow{QR} is colliner to \overrightarrow{EF} , so $\overrightarrow{QR} = \mu_3 \overrightarrow{EF} = \mu_3 (\vec{c} - \vec{b})$. Then $\overrightarrow{XR} = \overrightarrow{XQ} + \overrightarrow{QR} = (\lambda - \mu_3)\vec{b} + \mu_3\vec{c}$. On the other hand $\overrightarrow{XR} = \mu_4\vec{c}$, so $(\lambda - \mu_3)\vec{b} + \mu_3\vec{c} = \mu_4\vec{c}$. The vectors \vec{b} and \vec{c} are linear independent, so $\mu_3 = \lambda$, $\mu_4 = \mu_3 = \lambda$ and $\overrightarrow{XR} = \lambda\vec{c}$. Hence $\overrightarrow{RP} = \overrightarrow{XP} - \overrightarrow{XR} = \lambda(\vec{a} - \vec{c}) = \lambda \overrightarrow{FD}$, so vector \overrightarrow{RP} is parallel to \overrightarrow{FD} or RP ||FD.