Answer on Question \#43538 - Math - Analytic Geometry

Any point X inside triangle DEF is joined to its vertices. From a point P on $D X, P Q$ is drawn parallel to $D E$, meeting $X E$ at Q and $Q R$ is drawn parallel to $E F$, meeting $X F$ in R. Prove that $P R$ is parallel to DF.

Solution:

Let $\overrightarrow{X D}=\vec{a}, \overrightarrow{X E}=\vec{b}, \overrightarrow{X F}=\vec{c}$. Then $\overrightarrow{D E}=\vec{b}-\vec{a}, \overrightarrow{E F}=\vec{c}-\vec{b}, \overrightarrow{F D}=\vec{a}-\vec{c}$. Suppose that $\overrightarrow{X P}=$ $\lambda \overrightarrow{X D}=\lambda \vec{a}$. The vector $\overrightarrow{P Q}$ is colliner to $\overrightarrow{D E}$, so $\overrightarrow{P Q}=\mu_{1} \overrightarrow{D E}=\mu_{1}(\vec{b}-\vec{a})$. Then $\overrightarrow{X Q}=\overrightarrow{X P}+$ $\overrightarrow{P Q}=\left(\lambda-\mu_{1}\right) \vec{a}+\mu_{1} \vec{b}$. On the other hand $\overrightarrow{X Q}=\mu_{2} \overrightarrow{X E}=\mu_{2} \vec{b}$, so $\left(\mu_{1}-\lambda\right) \vec{a}+\mu_{1} \vec{b}=\mu_{2} \vec{b}$. The vectors \vec{a} and \vec{b} are linear independent, so $\mu_{1}=\lambda, \mu_{2}=\mu_{1}=\lambda$ and $\overrightarrow{X Q}=\lambda \vec{b}$. The vector $\overrightarrow{Q R}$ is colliner to $\overrightarrow{E F}$, so $\overrightarrow{Q R}=\mu_{3} \overrightarrow{E F}=\mu_{3}(\vec{c}-\vec{b})$. Then $\overrightarrow{X R}=\overrightarrow{X Q}+\overrightarrow{Q R}=\left(\lambda-\mu_{3}\right) \vec{b}+\mu_{3} \vec{c}$. On the other hand $\overrightarrow{X R}=\mu_{4} \overrightarrow{X F}=\mu_{4} \vec{c}$, so $\left(\lambda-\mu_{3}\right) \vec{b}+\mu_{3} \vec{c}=\mu_{4} \vec{c}$. The vectors \vec{b} and \vec{c} are linear independent, so $\mu_{3}=\lambda, \mu_{4}=\mu_{3}=\lambda$ and $\overrightarrow{X R}=\lambda \vec{c}$. Hence $\overrightarrow{R P}=\overrightarrow{X P}-\overrightarrow{X R}=\lambda(\vec{a}-\vec{c})=\lambda \overrightarrow{F D}$, so vector $\overrightarrow{R P}$ is parallel to $\overrightarrow{F D}$ or $R P \| F D$.

