

Answer on Question #43494 – Math - Statistics and Probability

Find $E(X)$, $\text{var}(X)$, and std deviation (x) if a random variable X is given by its density function $f(x)$, such that

$$f(x)=0, \text{ if } x \leq 1$$

$$f(x)=(3/8)(x^2), \text{ if } 0 < x \leq 2$$

$$f(x)=0, \text{ if } x > 2$$

Remark.

We suppose the density function $f(x)$ is defined by

$$f(x) = \begin{cases} 0, & x \leq 0, \\ \frac{3}{8}x^2, & 0 < x \leq 2, \\ 0, & x > 2, \end{cases}$$

$$\text{as then } \int_{-\infty}^{+\infty} f(x)dx = 1.$$

Solution.

The expected value equals

$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_0^2 xf(x)dx = \frac{3}{8} \int_0^2 x^3 dx = \frac{3x^4}{32} \Big|_0^2 = 1.5.$$

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x)dx = \frac{3}{8} \int_0^2 x^4 dx = \frac{3x^5}{40} \Big|_0^2 = 2.4.$$

The variance equals

$$\text{Var}(X) = E(X^2) - E^2(X) = 2.4 - 2.25 = 0.15.$$

The standard deviation equals

$$\sigma(X) = \sqrt{\text{Var}(X)} \approx 0.387.$$

Answer: $E(X) = 1.5$, $\text{Var}(X) = 0.15$, $\sigma(X) = \sqrt{0.15} \approx 0.387$.