Let $f(x)=2-\frac{2}{x}+\frac{6}{x^{2}}$. Find the open intervals on which $f(x)$ is increasing (decreasing). Then determine the x -coordinates of all relative maxima (minima)

1. $f(x)$ is increasing on which intervals?
2. $f(x)$ is decreasing on which intervals?
3. the relative maxima of $f(x)$ occurs at $x=$?
4. the relative minima of $f(x)$ occurs at $x=$?

Solution:

First need the derivative of the function in order to find the critical points.

$$
f^{\prime}(x)=\frac{2}{x^{2}}-\frac{12}{x^{3}}
$$

Simplifying this expression we obtain:

$$
f^{\prime}(x)=\frac{2 x-12}{x^{3}}
$$

Therefore, the critical points will be those values of x which make the derivative equals zero or where it does not defined. So, we must solve the equation

$$
\frac{2 x-12}{x^{3}}=0
$$

It's easy to identify the two critical points for this function (x_{1} where the derivative equals 0 , and x_{2} where the derivative doesn't exist).

$$
x_{1}=6 \quad x_{2}=0
$$

For these two points, consider the following intervals

$$
(-\infty, 0), \quad(0,6), \quad(6, \infty)
$$

Choose the test points from each of the intervals and examine the sign of $f^{\prime}(x)$ If $f^{\prime}(x)>0, f(x)$ is increasing in that interval.

If $f^{\prime}(x)<0, f(x)$ is decreasing in that interval.
$(-\infty, 0)$: test point chosen equal $x=-10, f^{\prime}(-10)=\frac{-32}{-1000}=0.032>0, f(x)$ increasing
$(0,6)$: test point chosen equal $x=1, f^{\prime}(1)=\frac{-10}{1}=-10<0, f(x)$ decreasing
$(6, \infty)$: test point chosen equal $x=10, f^{\prime}(10)=\frac{8}{1000}=0.008>0, f(x)$ increasing

So $f(x)$ is increasing on $(-\infty, 0)$ and $(6, \infty)$
$f(x)$ is decreasing on $(0,6)$
Using the definitions of relative maxima (minima). If $f^{\prime}(x)>0\left(f^{\prime}(x)<0\right)$ on an open interval extending left from x_{0} and $f^{\prime}(x)<0\left(f^{\prime}(x)>0\right)$ on an open interval extending right from x_{0}, then $f(x)$ has a relative maximum (minimum) at x_{0}.
$x_{1}=6$ relative minimum.
$x_{2}=0$ relative maximum.
Answer: 1) $f(x)$ is increasing on $(-\infty, 0)$ and $(6, \infty)$
2) $f(x)$ is decreasing on $(0,6)$
3) the relative maxima of $f(x)$ occurs at $x=0$
4) the relative minima of $f(x)$ occurs at $x=6$

