Let $f(x)=4 x^{3}+5$. Find the open intervals on which f is increasing (decreasing). Then determine the -x coordinates of all relative maxima (minima).

1. f is increasing on the intervals?
2. f is decreasing on the intervals?
3. the relative maxima of f occurs at?
4. the relative minima of f occurs at?

Solution

Let's find the intervals of increase and decrease of the function $f(x)$. So, we need to find the values of x at which the derivative of the function is equal 0 :

$$
f^{\prime}(x)=\left(4 * x^{3}+5\right)^{\prime}=\left(4 * x^{3}\right)^{\prime}+5^{\prime}=4 * 3 * x^{3-1}+0=12 x^{2}
$$

$f^{\prime}(x)=0 ; \quad 12 x^{2}=0$
$f^{\prime}(x)=0 ;$ at $x=0 ;$
$\left\{\begin{array}{l}f^{\prime}(x)>0, x \neq 0 \\ f^{\prime}(x)=0, x=0\end{array} \quad f(x)=\left\{\begin{array}{l}f^{\prime}(x)>0, x \in(-\infty ; 0) \cup(0 ;+\infty) \\ f^{\prime}(x)=0, x=0\end{array}\right.\right.$
Then, we can see, that:

1) function $f(x)$ is increasing on the intervals: $x \in(-\infty ; 0) \cup(0 ;+\infty)$
2) function $f(x)$ is decreasing on the interval : $x \in Q$.
$3), 4)$ this function have an extremum point at $x=0$.
As $f^{\prime}(x)$ has the same sign to the left and right of $x=x_{0}=0$ within the interval $(-3 ; 3)$, then $f\left(x_{0}\right)$ is neither a relative maximum nor minimum of f. In addition $f^{\prime}\left(x_{0}\right)=0$, then $\left(x_{0}, f\left(x_{0}\right)\right)$ is called horizontal point of inflection of f.
