Answer on Question \#43461 - Math - Analytic Geometry

Two vector $\mathrm{a} \& \mathrm{~b}$ are added. Prove that the magnitude of resultant vector cannot be greater than $(\mathrm{a}+\mathrm{b})$ and smaller than (a-b)

Solution

The magnitude of resultant vector is

$$
|\overrightarrow{a+\vec{b}}|=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}
$$

where θ is the angle between the vectors \vec{a} and \vec{b}.

When θ is zero, then resultant vector has the maximum length, equal to $\sqrt{a^{2}+b^{2}+2 a b}=\sqrt{(a+b)^{2}}=$ $|a+b|$.

When θ is 180 degrees, then resultant vector has the minimum length, equal to $\sqrt{a^{2}+b^{2}-2 a b}=$ $\sqrt{(a-b)^{2}}=|a-b|$.

