Answer on Question \#43457 - Math - Statistics and Probability

A random variable X is distributed normally with $E(X)=8$ and $\sigma(X)=3$. Find $P(9 \leq X<11)$.

Solution

X is normally distributed with parameters $\mu=\mathrm{E}(\mathrm{X})=8, \sigma=\sigma(\mathrm{X})=3$.
If X is distributed normally $N\left(\mu, \sigma^{2}\right)$, then $P(a \leq X<b)=P\left(\frac{a-\mu}{\sigma} \leq Z<\frac{b-\mu}{\sigma}\right)$, where Z has the standard normal distribution.

The standardized variable is $Z=\frac{X-\mu}{\sigma}=\frac{X-8}{3}$.
In particular,
$x=9$ gives $z=\frac{x-\mu}{\sigma}=\frac{9-8}{3}=\frac{1}{3} \approx 0.33$,
$x=11$ gives $z=\frac{x-\mu}{\sigma}=\frac{11-8}{3}=1$.
To find $P(Z<1)=0.8413$ and $P(Z<0.33)=0.6293$, we use statistical tables or software.
Therefore, the required probability is

$$
P(9 \leq X<11)=P(0.33 \leq Z<1)=P(Z<1)-P(Z<0.33)=0.8413-0.6293=0.212 \text {. }
$$

