## Answer on Question #43457 – Math - Statistics and Probability

A random variable X is distributed normally with E(X) = 8 and  $\sigma(X) = 3$ . Find  $P(9 \le X < 11)$ .

## Solution

X is normally distributed with parameters  $\mu = E(X) = 8$ ,  $\sigma = \sigma(X) = 3$ .

If X is distributed normally  $N(\mu, \sigma^2)$ , then  $P(a \le X < b) = P\left(\frac{a-\mu}{\sigma} \le Z < \frac{b-\mu}{\sigma}\right)$ , where Z has the standard normal distribution.

The standardized variable is  $Z = \frac{X-\mu}{\sigma} = \frac{X-8}{3}$ .

In particular,

*x=9* gives  $z = \frac{x-\mu}{\sigma} = \frac{9-8}{3} = \frac{1}{3} \approx 0.33$ ,

x=11 gives 
$$z = \frac{x-\mu}{\sigma} = \frac{11-8}{3} = 1.$$

To find P(Z < 1) = 0.8413 and P(Z < 0.33) = 0.6293, we use statistical tables or software.

Therefore, the required probability is

 $P(9 \le X < 11) = P(0.33 \le Z < 1) = P(Z < 1) - P(Z < 0.33) = 0.8413 - 0.6293 = 0.212.$ 

www.AssignmentExpert.com