Answer on Question \#43248-Math-Statistics and Probability

We have a fair eight-sided die.
a. Find the math expectation of a single roll.
b. Find the math expectation of the numerical sum of 4 rolls.
c. Find the math expectation of the numerical product (i.e., multiplication) of 5 rolls.

Solution

Since the die is fair, the probability of any one of the eight values turning up on any single roll is $\frac{1}{8}$.
a. The math expectation of a single roll is then:

$$
E(\text { single roll })=1\left(\frac{1}{8}\right)+2\left(\frac{1}{8}\right)+3\left(\frac{1}{8}\right)+4\left(\frac{1}{8}\right)+5\left(\frac{1}{8}\right)+6\left(\frac{1}{8}\right)+7\left(\frac{1}{8}\right)+8\left(\frac{1}{8}\right)=\frac{36}{8}=\frac{9}{2}
$$

b. The math expectation of the numerical sum of 4 rolls is the sum of four math expectations of a single roll:

$$
E(\text { numerical sum of } 4 \text { rolls })=\frac{9}{2}+\frac{9}{2}+\frac{9}{2}+\frac{9}{2}=4 \cdot \frac{9}{2}=18
$$

c. The math expectation of the numerical product (i.e., multiplication) of 5 rolls is the product of the math expectation of a single roll, multiplied by itself a total of five times:

$$
E(\text { numerical product of } 5 \text { rolls })=\frac{9}{2} \cdot \frac{9}{2} \cdot \frac{9}{2} \cdot \frac{9}{2} \cdot \frac{9}{2}=\left(\frac{9}{2}\right)^{5}=\frac{9^{5}}{2^{5}} \approx 1845.2812
$$

