Answer on Question \#43187-Math-Statistics and Probability

Your DNA code is composed of a series of four nucleotides: adenine, guanine, thymidine and cytosine (A, G, T and C, respectively).

1) What is the probability an individual has the following nucleotide sequence: "TATATA" at any particular position? (assuming independence).
2) What is the probability that an individual has k T's in their DNA code at any particular position? (k can be any integer and you may assume independence). Here we're looking for the probability of k consecutive T's.

Solution

1) The probability an individual has the following nucleotide sequence: "TATATA" at any particular position is
$P(T$ is first\&A is second\&T is third\&A is fourth\&T is fifth\&A is sixth).
And since " $\&$ " tells us to multiply probabilities:
$P(T$ is first $) \cdot P(A$ is second $) \cdot P(T$ is third $) \cdot P(A$ is fourth $) \cdot P(T$ is fifth $) \cdot P(A$ is sixth $)$.
The probability of A or T is

$$
P(A)=P(T)=\frac{1}{4}
$$

So, the probability an individual has the following nucleotide sequence: "TATATA" at any particular position is

$$
P(\text { TATATA })=\overbrace{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}}^{6}=\frac{1}{4^{6}}=\frac{1}{4096}
$$

2) Therefore the probability of k consecutive T's

$$
P(\overbrace{\mathrm{TTT} \ldots \mathrm{~T}}^{k})=\overbrace{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \ldots \frac{1}{4}}^{k}=\frac{1}{4^{k}} .
$$

Answer: 1) $\frac{1}{4096}$; 2) $\frac{1}{4^{k}}$.

