

Answer on Question 43170, Math, Matrix | Tensor Analysis

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad X^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ca + dc & cb + d^2 \end{pmatrix}.$$

$$\text{Thus, } X^2 + 2X = \begin{pmatrix} a^2 + 2a + bc & ab + 2b + bd \\ ca + dc + 2c & cb + d^2 + 2d \end{pmatrix} = -5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

This is a system of four non-linear equations for a, b, c, d .

Let us rewrite equations, which arise from diagonal elements in forms: $(a+1)^2 + 4 + bc = 0$ and $(d+1)^2 + 4 + bc = 0$. Subtracting one equation from another, obtain $(a+1)^2 = (d+1)^2$, or $d = a$. Plugging in $d = a$ into $ca + dc + 2c = 0$ gives $d = -1$. Hence, $a = d = -1$.

Substituting $a = -1$ into equation $a^2 + 2a + bc = -5$, obtain $bc = -4$, or $c = \frac{-4}{b}$.

$$\text{Thus, } a = d = -1, \quad c = \frac{-4}{b}.$$

$$X = \begin{pmatrix} -1 & b \\ \frac{-4}{b} & -1 \end{pmatrix}.$$