Let $n=3 m+k, k=\overline{0,2}, \forall n, m \in N$.
Then $n^{2}=9 m^{2}+6 m k+k^{2}=\left\{\begin{array}{c}9 m^{2} \\ 9 m^{2}+6 m+1 \\ 9 m^{2}+12 m+4\end{array}\right\}=\left\{\begin{array}{c}3\left(3 m^{2}\right) \\ 3\left(3 m^{2}+3 m\right)+1 \\ 3\left(3 m^{2}+4 m+1\right)+1\end{array}\right\} \begin{aligned} & k=0 \\ & k=1 \\ & k=2\end{aligned}$
Hence, $n^{2}=3 l+k, k=\overline{0,1}, \forall n, l \in N$. But n is prime to 3 , hence, n^{2} is prime to 3 and in our case $n^{2}=3 l+1, \forall n, l \in N$.

Consider $x^{2}+y^{2}=(3 u+1)^{2}+(3 v+1)^{2}=9 u^{2}+6 u+1+9 v^{2}+6 v+1=3\left(3 u^{2}+3 v^{2}+2 u+2 v\right)+2$.
Hence, $x^{2}+y^{2}=3 w+2$. But we proved, that the square of natural number can have remainder equal to 0 or 1 and in our case it equal to 2 . Then $x^{2}+y^{2}$ can't be a perfect square.

