A wooden block cross section diameter 20cm, and 4m long floats in water what part of volume is above water. If density of wooden block is 700kg/m*m*m and of water is 1000kg/m*m*m

Solution.

Let *h* be the altitude of the block over the water. The volume of the under the water part of the block is $V_0 = \frac{\pi \cdot 0.2^2}{4} \cdot 4 = 0.04\pi$ m³. The volume of all block is $V = \frac{\pi \cdot 0.2^2}{4} \cdot (4 + h)$. By Archimed's principle

 $ho_{water}V_0g=
ho_{wood}Vg$ (buoyancy = gravity).

Hence, $\frac{V}{V_0} = \frac{\rho_{water}}{\rho_{wood}}$ or $\frac{4+h}{4} = \frac{10}{7}$, so $h = \frac{12}{7} \approx 1.714$ m.

Answer: $h = \frac{12}{7} \approx 1.714 \text{ m.}$