Answer on Question \#43052 - Math - Other

A wooden block cross section diameter 20 cm , and 4 m long floats in water what part of volume is above water. If density of wooden block is $700 \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~m}^{*} \mathrm{~m}$ and of water is $1000 \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~m}^{*} \mathrm{~m}$

Solution.

Let h be the altitude of the block over the water. The volume of the under the water part of the block is $V_{0}=\frac{\pi \cdot 0.2^{2}}{4} \cdot 4=0.04 \pi \mathrm{~m}^{3}$. The volume of all block is $V=\frac{\pi \cdot 0.2^{2}}{4} \cdot(4+h)$. By Archimed's principle

$$
\rho_{\text {water }} V_{0} g=\rho_{\text {wood }} V g \text { (buoyancy = gravity). }
$$

Hence, $\frac{V}{V_{0}}=\frac{\rho_{\text {water }}}{\rho_{\text {wood }}}$ or $\frac{4+h}{4}=\frac{10}{7}$, so $h=\frac{12}{7} \approx 1.714 \mathrm{~m}$.
Answer: $h=\frac{12}{7} \approx 1.714 \mathrm{~m}$.

