

Answer on Question #42971, Math, Abstract Algebra

Task: Simplify the following Boolean function:

$$F = A'C + A'B + AB'C + BC, \text{ using K-map?}$$

Solution:

So, we must do for simplifying the following Boolean function:

1. Construct a K-map.
2. Find all groups of horizontal or vertical adjacent squares that contain 1.
 - a. Each group must be either rectangular or square with 2^n squares.
 - b. Each group should be as large as possible.
 - c. Each 1 on the K-map must be covered at least once. The same 1 can be included in several groups if necessary.
 - d. Nonessential groups are omitted. (A nonessential group does not contain a 1 that is not covered by any other group)
 - e. Adjacency applies to both vertical and horizontal borders.
3. Translate each group into a product term by eliminating any variable whose value changes from cell to cell.
4. Sum all the product terms.

		B			
		<i>x'y'z'</i>	<i>x'y'z</i>	<i>x'yz</i>	<i>x'yz'</i>
A 1		<i>xy'z'</i>	<i>xy'z</i>	<i>xyz</i>	<i>xyz'</i>
<i>0</i>					

$$F = A'C + A'B + AB'C + BC :$$

$$F = C + A'B$$

Answer: $F = C + A'B$.