Answer on Question \#42962, Math, Differential Geometry

A curve has the equation $y=x / 16^{*}(5-x)^{\wedge} 4$. Calculates the values of x for which $d y / d x=0$. Given that a small change, p, is made in the x-coordinate at the point $(4,0.25)$, calculate, in terms of p, the approximate change in the y-coordinate .

Answer.

$y=\frac{x(5-x)^{4}}{16} \rightarrow \frac{d y}{d x}=\frac{(5-x)^{4}}{16}-\frac{4 x(5-x)^{3}}{16}=\frac{5(1-x)(5-x)^{3}}{16}$
So, $\frac{d y}{d x}=0$ when $x=1$ or $\mathrm{x}=5$.
Let $x=4+p \rightarrow y(4+p)=\frac{(4+p)(1-p)^{4}}{16}$.
For small $p, y(4+p)=\frac{4-15 p}{16}+O\left(p^{2}\right)=0.25-\frac{15}{16} p+O\left(p^{2}\right)$.
Therefore, the approximate change in the y-coordinate is: $\Delta y=-\frac{15}{16} p$.

