Answer on Question \#42864 - Math - Linear Algebra

Let $\mathrm{B} 1=\{(1,1),(1,2)\}$ and $\mathrm{B} 2=\{(1,0),(2,1)\}$. Find the matrix of the change of basis from B 1 to B 2

Solution

To find the matrix $P_{B_{2} \leftarrow B_{1}}$ of the change of basis from $B_{1}=\left\{e_{1} ; e_{2}\right\}=\left\{\binom{1}{1},\binom{1}{2}\right\}$ to $B_{2}=\left\{u_{1} ; u_{2}\right\}=$ $=\left\{\binom{1}{0},\binom{2}{1}\right\}$, we first express the basis vectors
$u_{1}=\alpha_{1} e_{1}+\alpha_{2} e_{2}$
$u_{2}=\beta_{1} e_{1}+\beta_{2} e_{2}$ or
$\binom{1}{0}=\alpha_{1}\binom{1}{1}+\alpha_{2}\binom{1}{2}$,
$\binom{2}{1}=\beta_{1}\binom{1}{1}+\beta_{2}\binom{1}{2}$,
It means
$\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{1}{0}$,
$\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\binom{\beta_{1}}{\beta_{2}}=\binom{2}{1}$.
Multiply equalities by the corresponding inverse matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}$ and get
$\binom{\alpha_{1}}{\alpha_{2}}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}\binom{1}{0}$,
$\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}\binom{2}{1}$
Find matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}$ by row reduction:
$\left(\begin{array}{ll|ll}1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right) \sim \underset{R_{2} \leftarrow R_{2}-R_{1}}{R_{1} \leftarrow R_{1}} \sim\left(\begin{array}{cc|cc}1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1\end{array}\right) \sim \underset{R_{1} \leftarrow R_{1}-R_{2}}{R_{2} \leftarrow R_{2}} \sim\left(\begin{array}{cc|cc}1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1\end{array}\right)$.
So, $\quad\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}=\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$.
Finally
$\binom{\alpha_{1}}{\alpha_{2}}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}\binom{1}{0}=\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)\binom{1}{0}=\binom{2}{-1},\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)^{-1}\binom{2}{1}=\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)\binom{2}{1}=\binom{3}{-1}$.
Thus, $\left(\begin{array}{ll}\alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2}\end{array}\right)^{T}=\left(\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2}\end{array}\right)=\left(\begin{array}{cc}2 & 3 \\ -1 & -1\end{array}\right)$ is the matrix of change of basis from B 1 to B 2

