Answer on Question \#42787, Math, Abstract Algebra

Problem.

How many Boolean functions on two independent Boolean variables a and b are dependent on either a or b or both?

Solution.

There are $2^{4}=16$ different Boolean functions on two Boolean variables a and b (see table).

a	b	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Two of these functions are independent of both a and b, as they are constants:
$f_{0}(a, b)=0 ;$
$f_{15}(a, b)=1$.
Four of these are functions of a single variable:
$f_{3}(a, b)=a ;$
$f_{5}(a, b)=b ;$
$f_{10}(a, b)=\bar{b} ;$
$f_{12}(a, b)=\bar{a}$.
Ten other functions depend of both variables.
Answer: independent of both variables - 2 functions, dependent on either a or $b-4$ functions, dependent of both variables - 10 functions.

