Answer on Question \#42777 - Math - Calculus

Using the given zero, find one other zero of $f(x)$. Explain the process you used to find your solution.
$2-3 i$ is a zero of $f(x)=x 4-4 x 3+14 x 2-4 x+13$.

Solution:

We will use Horner's method (http://en.wikipedia.org/wiki/Horner\'s method).
So we will create a table of coefficients of equation $x^{4}-4 x^{3}+14 x^{2}-4 x+13=0$:

	1	-4	14	-4	13

We will try $(2+3 i)$ as a zero of the equation:

	1	-4	14	-4	13
$\mathbf{2 + 3 i}$					

We copy a first coeficient and put it below:

	1	-4	14	-4	13
$2+3 i$	1				

Then we multiply my new zero ($2+3 i$) and " 1 " and put answer in the table:

	1	-4	14	-4	13
		$\mathbf{2 + 3 i}$			
$2+3 i$	1				

Then we add " -4 " and $(2+3 i)$ and put answer in the table:

	1	-4	14	-4	13
		$2+3 i$			
$2+3 i$	1	$-2+3 i$			

Then we multiply $(2+3 i)(-2+3 i)=-4-6 i+6 i+9 i^{2}=-4-9=-13$ and put it in the table.

	1	-4	14	-4	13
		$2+3 \mathrm{i}$	-13		
$2+3 \mathrm{i}$	1	$-2+3 \mathrm{i}$			

Analogically till the end of the table:

	1	-4	14	-4	13
		$2+3 i$	-13	$2+3 i$	-13
$2+3 i$	1	$-2+3 i$	1	$-2+3 i$	0

We have received zero in the end. It means, that $(2+3 i)$ is a zero of the equation.

Answer:

$2+3 i$

