

Answer on Question #42777 – Math - Calculus

Using the given zero, find one other zero of $f(x)$. Explain the process you used to find your solution.

$2 - 3i$ is a zero of $f(x) = x^4 - 4x^3 + 14x^2 - 4x + 13$.

Solution:

We will use Horner's method (http://en.wikipedia.org/wiki/Horner%27s_method).

So we will create a table of coefficients of equation $x^4 - 4x^3 + 14x^2 - 4x + 13 = 0$:

	1	-4	14	-4	13

We will try $(2 + 3i)$ as a zero of the equation:

	1	-4	14	-4	13
2 + 3i					

We copy a first coefficient and put it below:

	1	-4	14	-4	13
2 + 3i	1				

Then we multiply my new zero $(2+3i)$ and “1” and put answer in the table:

	1	-4	14	-4	13
		2+3i			
2 + 3i	1				

Then we add “-4” and $(2+3i)$ and put answer in the table:

	1	-4	14	-4	13
		$2+3i$			
$2+3i$	1	-2+3i			

Then we multiply $(2+3i)(-2+3i) = -4 - 6i + 6i + 9i^2 = -4 - 9 = -13$ and put it in the table.

	1	-4	14	-4	13
		$2+3i$	-13		
$2+3i$	1	$-2+3i$			

Analogically till the end of the table:

	1	-4	14	-4	13
		$2+3i$	-13	$2+3i$	-13
$2+3i$	1	$-2+3i$	1	$-2+3i$	0

We have received zero in the end. It means, that $(2+3i)$ is a zero of the equation.

Answer:

$2+3i$