Answer on Question \#42774 - Math - Calculus

State how many imaginary and real zeros the function has.

$$
f(x)=x^{3}+5 x^{2}+x+5
$$

Solution.

$$
\begin{gathered}
\mathrm{x}^{3}+5 \mathrm{x}^{2}+\mathrm{x}+5=0 \\
x\left(\mathrm{x}^{2}+1\right)+5\left(\mathrm{x}^{2}+1\right)=0 \\
x\left(\mathrm{x}^{2}+1\right)+5\left(\mathrm{x}^{2}+1\right)=0 \\
\left(\mathrm{x}^{2}+1\right)(\mathrm{x}+5)=0
\end{gathered}
$$

So we get $\mathrm{x}^{2}+1=0$ or $\mathrm{x}+5=0$. Hence, the zeros of $\mathrm{f}(\mathrm{x})$ are $x_{1}=i, x_{2}=-i, x_{3}=-5$

Answer. 1 real zero $x=-5$, and two imaginary zeros $x=1$ and $x=-i$.

