Answer on Question \# 42728 - Math - Algebra

Simultaneous equation $x-y=-3$ and $x^{\wedge} 2-y=9$.

Solution:

Let's find x and y .

$$
\left\{\begin{array}{c}
x-y=-3 \\
x^{2}-y=9
\end{array}\right.
$$

Let's express x from first expression, and put it in second expression.

$$
\left\{\begin{array}{c}
x=y-3 \\
(y-3)^{2}-y=9
\end{array}\right.
$$

Let's open brackets.

$$
\left\{\begin{array}{c}
x=y-3 \\
y^{2}-6 * y+9-y=9
\end{array}\right.
$$

We can get such expression $y^{2}-6 * y+9-y=9$, let's simplify it.

$$
\begin{gathered}
y^{2}-7 * y=0 \\
y(y-7)=0
\end{gathered}
$$

From here: $\mathrm{y}=0$ and $\mathrm{y}=7$.
Now we know y , we can find $\mathrm{x}=>\mathrm{x}=-3$ and $\mathrm{x}=4$.

Answer: Pairs of variables $(-3,0)$ and $(4,7)$ will be solution of simultaneous equation.

