## Answer on Question\#42693 - Math - Geometry

Suppose a cylindrical tank is 12 feet long and 2 feet in diameter. The tank is laid on its side and filled with water to a height of 7 inches. Given that the volume of water in the tank is equal to the length of the tank times the cross-sectional area of the water, find the tank's volume.

## Solution:



The volume of water in the tank is:
$V=A l$
Where $A$ is the area of a segment and I is the length of tank
Given $r=1$ foot, since the radius is half the diameter, $h=7 / 12 \mathrm{feet}, l=12 \mathrm{feet}$
The area of a circular segment is:
$A=2\left(A_{M O R}-A_{M O P}\right)$
$A_{M O R}=\pi r^{2} \frac{\angle M O R}{2 \pi}=r^{2} \frac{\angle M O R}{2}$
$\angle M O R=\cos ^{-1} \frac{O P}{r}=\cos ^{-1} \frac{r-h}{r}=\cos ^{-1} \frac{1-\frac{7}{12}}{1}=\cos ^{-1} \frac{5}{12}$
$A_{M O R}=1^{2} \frac{\cos ^{-1} \frac{5}{12}}{2}=\frac{\cos ^{-1} \frac{5}{12}}{2}$
$A_{M O P}=\frac{1}{2} O P \cdot P M$
$O P=r-h=1-\frac{7}{12}=\frac{5}{12}$
$P M=\sqrt{r^{2}-(r-h)^{2}}=\sqrt{1-\left(\frac{5}{12}\right)^{2}}=\frac{\sqrt{119}}{12}$
$A_{M O P}=\frac{1}{2} \cdot \frac{5}{12} \cdot \frac{\sqrt{119}}{12}$
$A=2\left(\frac{\cos ^{-1} \frac{5}{12}}{2}-\frac{1}{2} \cdot \frac{5}{12} \cdot \frac{\sqrt{119}}{12}\right)=\cos ^{-1} \frac{5}{12}-\frac{5 \sqrt{119}}{144}=0.7622$

So the volume of water in the tank is:

$$
\boldsymbol{V}=0.7622 \cdot 12=\mathbf{9 . 1 4 7} \text { feet }^{3}
$$

