Answer on Question\#42663 - Math - Calculus

Question:

What fraction of the volume of a sphere is taken up by the largest cylinder that can be fit inside the sphere?

Solution:

Let R be the radius of sphere, r - radius of base of cylinder and h - half of cylinder's height.

It's known that volume of the sphere is

$$
V_{s}=\frac{4}{3} \pi R^{3}
$$

and volume of cylinder is

$$
V_{c}=\pi r^{2} \cdot 2 h=2 \pi r^{2} h
$$

By Pythagorean theorem, $R^{2}=h^{2}+r^{2}$,
then $\quad r^{2}=R^{2}-h^{2}$.
Hence $\quad V_{c}=2 \pi\left(R^{2}-h^{2}\right) h=2 \pi\left(R^{2} h-h^{3}\right)$
To find max volume obtain derivative on h and equate it to zero.
$\left(V_{c}\right)^{\prime}=2 \pi\left(R^{2}-3 h^{2}\right)$
$2 \pi\left(R^{2}-3 h^{2}\right)=0$
$R^{2}-3 h^{2}=0$
$h^{2}=\frac{R^{2}}{3}$
Then $\quad h=\frac{R}{\sqrt{3}}$ and $r^{2}=R^{2}-\frac{R^{2}}{3}=\frac{2 R^{2}}{3}$
If $h<\frac{R}{\sqrt{3}}$ then $R^{2}-3 h^{2}>0$ and $\left(V_{c}\right)^{\prime}>0$.
But if $h>\frac{R}{\sqrt{3}}$ then $R^{2}-3 h^{2}<0$ and $\left(V_{c}\right)^{\prime}<0$.
It means that $h=\frac{R}{\sqrt{3}}$ is point of maximum of V_{c} and
$V_{c, \max }=2 \pi \frac{2 R^{2}}{3} \frac{R}{\sqrt{3}}=\frac{4 \pi R^{3}}{3 \sqrt{3}}$
Finally, fraction is
$\frac{V_{c, \max }}{V_{S}}=\frac{\frac{4 \pi R^{3}}{3 \sqrt{3}}}{\frac{4}{3} \pi R^{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \approx 0.577$

Answer:

$\frac{V_{c, \max }}{V_{S}}=\frac{\sqrt{3}}{3} \approx 0.577$

