Answer on Question \#42623-Math-Analytic Geometry

Find the equation of the line with the given condition

1. Passing through ($-3,7$) and y-intercept 3

Solution

We have two equations $y-7=m(x+3)$ and $y=m x+3$. So

$$
y=m x+3 m+7=m x+3 \rightarrow m=-\frac{4}{3}
$$

Answer: $y=-\frac{4}{3} x+3$.
2. Passing through ($-3,4$) and x-intercept -1 .

Solution

X -intercept of -1 indicates the point is $(-1,0)$.
The slope is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{-3-(-1)}=-2
$$

The equation of the line is

$$
y=-2(x+1)
$$

Answer: $y=-2(x+1)$.
3. Through $(-3,8)$ parallel to $7 x+2 y+9=0$

Solution

The slope of $7 x+2 y+9=0$ is $m=-\frac{7}{2}$.
The equation of the line is

$$
y-8=-\frac{7}{2}(x+3) \rightarrow y=-\frac{7}{2} x-\frac{5}{2}
$$

Answer: $y=-\frac{7}{2} x-\frac{5}{2}$.
4. Through $(4,-7)$ parallel to $3 x+y+6=0$

Solution

The slope of $3 x+y+6=0$ is $m=-3$.
The equation of the line is

$$
y+7=-3(x-4) \rightarrow y=-3 x+5
$$

Answer: $y=-3 x+5$.
5. Slope $1 / 2$ and through the point of intersection of $3 x+y+2=0$ and $x+3 y+6=0$

Solution

The point of intersection of $3 x+y+2=0$ and $x+3 y+6=0$ is giving by a system

$$
\left\{\begin{array}{r}
3 x^{\prime}+y^{\prime}+2=0 \\
x^{\prime}+3 y^{\prime}+6=0
\end{array} \rightarrow x^{\prime}=0, \quad y^{\prime}=-2\right.
$$

The equation of the line is

$$
y+2=\frac{1}{2} x \rightarrow y=\frac{1}{2} x-2
$$

Answer: $y=\frac{1}{2} x-2$.
6. x-intercept -3 and parallel to $4 x+7 y=1$

Solution

The slope of $4 x+7 y=1$ is $m=-\frac{4}{7}$.
X-intercept of -3 indicates the point is $(-3,0)$.
The equation of the line is

$$
y=-\frac{4}{7}(x+3)
$$

Answer: $y=-\frac{4}{7}(x+3)$.

