Answer on Question\#42619- Math - Combinatorics | Number Theory

Task:

A group consists of 4 men and 7 women. In how many ways can a team of 5 be selected, if the team has at least 3 women?

Solution:

At least 3 women have to be selected, so there are three variants:

1. 3 women and 2 men were selected
2. 4 women and 1 men were selected
3. 5 women and 0 men were selected

1 item

So, the number of variants to choose 3 women out of 7 :

$$
C_{7}^{3}=\frac{7!}{3!* 4!}=\frac{7 * 6 * 5 * 4 * 3 * 2}{3 * 2 * 4 * 3 * 2}=35
$$

The number of variants to choose 2 men out of 4 :

$$
C_{4}^{2}=\frac{4!}{2!* 2!}=\frac{4 * 3 * 2}{2 * 2}=6
$$

So, the overall number of variants in item 1 is $C_{7}^{3} * C_{4}^{2}=35 * 6=\mathbf{2 1 0}$.

2 item

Analogous to the 1 item,
The number of variants to choose 4 women out of 7 :

$$
C_{7}^{4}=\frac{7!}{3!* 4!}=\frac{7 * 6 * 5 * 4 * 3 * 2}{3 * 2 * 4 * 3 * 2}=35
$$

The number of variants to choose 1 men out of 4 :

$$
C_{4}^{1}=\frac{4!}{1!* 3!}=\frac{4 * 3 * 2}{3 * 2}=4
$$

So, the overall number of variants in item 2 is $C_{7}^{4} * C_{4}^{1}=35 * 4=\mathbf{1 4 0}$.

3 item

Analogous to the 1 item,
The number of variants to choose 5 women out of 7 :

$$
C_{7}^{5}=\frac{7!}{5!* 2!}=\frac{7 * 6 * 5 * 4 * 3 * 2}{5 * 4 * 3 * 2 * 2}=21
$$

The number of variants to choose 0 men out of 4:

$$
C_{4}^{0}=\frac{4!}{0!* 4!}=1
$$

So, the overall number of variants in item 3 is $C_{7}^{4} * C_{4}^{1}=\mathbf{2 1}$.

So, a team of 5 person, if the team has at least 3 women, can be selected in $210+140+21=371$ ways.

Answer:

371

