Answer on Question \#42611-Math-Other

A window consists of a rectangular piece of clear glass with a semicircular piece of colored glass on top. Suppose that the colored glass transmits only k times as much light per unit area as the clear glass (k is between 0 and 1). If the distance from top to bottom (across both the rectangle and the semicircle) is a fixed distance H , find (in terms of k) the ratio of vertical side to horizontal side of the rectangle for which the window lets through the most light.

Solution

r is a radius of a semicircle, horizontal side of the rectangle is equal $2 r$, vertical side of the rectangle is equal $H-r$. Effective area of the window is

$$
\begin{gathered}
S=S_{\text {rectangular }}+k S_{\text {semicircular }}=2 r \cdot(H-r)+\frac{k \pi r^{2}}{2} . \\
\frac{d S}{d r}=2 H-4 r+k \pi r=2 H+(k \pi-4) r . \\
\frac{d S}{d r}=0 \rightarrow 2 H+(k \pi-4) r=0 \rightarrow r=\frac{2 H}{4-k \pi} .
\end{gathered}
$$

The ratio is

$$
\frac{(H-r)}{2 r}=\frac{1}{2}\left(\frac{H}{r}-1\right)=\frac{1}{2}\left(\frac{H(4-k \pi)}{2 H}-1\right)=\frac{2-k \pi}{4} .
$$

If $k \leq \frac{2}{\pi}$ this solution is valid, but if $k \geq \frac{2}{\pi}$ the ratio is negative.
If $k \geq \frac{2}{\pi}$ the function $S=2 r \cdot(H-r)+\frac{k \pi r^{2}}{2}(r \leq H)$ has maximum value at $r=H$:

$$
S=2 H \cdot(H-H)+\frac{k \pi H^{2}}{2}=0+\frac{k \pi H^{2}}{2}=\frac{k \pi H^{2}}{2}
$$

This means that the window should be semicircular with no rectangular part.
If $k \geq \frac{2}{\pi}$, the ratio is zero:

$$
\frac{(H-H)}{2 H}=0
$$

Answer: If $k \leq \frac{2}{\pi}$ the ratio is $\frac{2-k \pi}{4}$; if $k \geq \frac{2}{\pi}$, the ratio is zero.

