Answer on Question \#42528 - Math - Calculus

Using the given zero, find one other zero of $f(x)$. Explain the process you used to find your solution.
Explain this to me please help i'm having problem please show me an example

Answer.

Generally, If you have found a zero x_{1} of $f(x)$, then you can divide $f(x)$ by $\left(x-x_{1}\right)$ and find zeros of the new function.

A few special cases.

1. If given root is complex i.e. $x_{1}=a+b i$, so, since complex roots always appear in pairs, the other root must be its conjugate i.e. $x_{2}=a-b i$.
For example, $x_{1}=2+5 i$ then $x_{2}=2-5 i$.
2. If $f(x)$ is the quadratic function: $f(x)=a x^{2}+b x+c$ and x_{1}, x_{2} are the roots, then $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ so, $x_{1}+x_{2}=-\frac{b}{a}, \quad x_{1} x_{2}=\frac{c}{a}$
Therefore, if we know one root x_{1}, we can find another: $x_{2}=-\frac{b}{a}-x_{1}$ or $x_{2}=\frac{c}{a x_{1}}$.
For example, $x_{1}=1, f(x)=2 x^{2}-6 x+4$, then $x_{2}=\frac{6}{2}-1=2$ or $x_{2}=\frac{4}{2}=2$
3. If $f(x)$ is the cubic function: $f(x)=a x^{3}+b x^{2}+c x+d$ and x_{1} is the root, then $f(x)=a\left(x-x_{1}\right)\left(x^{2}+p x+q\right)$ where $p=\frac{b+a x_{1}}{a}, q=-\frac{d}{a x_{1}}$.
Therefore, if we know one root x_{1}, we can find 2 others from the quadratic equation: $x^{2}+p x+q=0$.
For example, $x_{1}=1, f(x)=x^{3}+2 x^{2}-x-1, p=3, q=2$ and from the quadratic equation $x^{2}+3 x+2$ we have $x_{2}=-1, x_{3}=-2$.
