

Answer on Question #42528 – Math - Calculus

Using the given zero, find one other zero of $f(x)$. Explain the process you used to find your solution.

Explain this to me please help i'm having problem please show me an example

Answer.

Generally, If you have found a zero x_1 of $f(x)$, then you can divide $f(x)$ by $(x - x_1)$ and find zeros of the new function.

A few special cases.

1. If given root is complex i.e. $x_1 = a + bi$, so, since complex roots always appear in pairs, the other root must be its conjugate i.e. $x_2 = a - bi$.

For example, $x_1 = 2 + 5i$ then $x_2 = 2 - 5i$.

2. If $f(x)$ is the quadratic function: $f(x) = ax^2 + bx + c$ and x_1, x_2 are the roots, then $f(x) = a(x - x_1)(x - x_2)$ so, $x_1 + x_2 = -\frac{b}{a}$, $x_1x_2 = \frac{c}{a}$

Therefore, if we know one root x_1 , we can find another: $x_2 = -\frac{b}{a} - x_1$ or $x_2 = \frac{c}{ax_1}$.

For example, $x_1 = 1$, $f(x) = 2x^2 - 6x + 4$, then $x_2 = \frac{6}{2} - 1 = 2$ or $x_2 = \frac{4}{2} = 2$

3. If $f(x)$ is the cubic function: $f(x) = ax^3 + bx^2 + cx + d$ and x_1 is the root, then $f(x) = a(x - x_1)(x^2 + px + q)$ where $p = \frac{b+ax_1}{a}$, $q = -\frac{d}{ax_1}$.

Therefore, if we know one root x_1 , we can find 2 others from the quadratic equation: $x^2 + px + q = 0$.

For example, $x_1 = 1$, $f(x) = x^3 + 2x^2 - x - 1$, $p = 3$, $q = 2$ and from the quadratic equation $x^2 + 3x + 2$ we have $x_2 = -1$, $x_3 = -2$.