Answer on Question \#42526 - Math - Calculus

We prove that the horizontal asymptote of $y=\frac{2 x+3}{9 x+1}$ is $y=\frac{2}{9}$.
We need to find an oblique asymptote $y=k x+b$ of the graph of the function $y=f(x)$, where $k=\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \frac{(2 x+3)}{x(9 x+1)}=0, b=\lim _{x \rightarrow+\infty}(f(x)-k x)=\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{2 x+3}{9 x+1}=\frac{2}{9}$.

In similar way we define the limits will be the same as $x \rightarrow-\infty$.
Thus, $y=\frac{2}{9}$ is a horizontal asymptote of $y=\frac{2 x+3}{9 x+1}$. Moreover, this function has a vertical asymptote $x=-\frac{1}{9}$.

