Answer on Question \#42523 - Math - Algebra
 Problem

Write a polynomial function of minimum degree with real coefficients whose zeros include those listed. Write the polynomial in standard form.
$4,-14$, and $5+8 \mathrm{i}$.

Solution

The complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and $a+b i$ is a root of P (a and b are real numbers), then its complex conjugate $a-$ $b i$ is also a root of P.
That's why not only $5+8 i$ is a zero of the desired polynomial, but also $5-8 i$. Now, as we have 4 zeros of the polynomial desired (and it should also be of minimum degree possible), we can multiply 4 factors of the form $\left(x-x_{0}\right)$, where x_{0} is a zero, together.
So, $P(x)=(x-4)(x+14)(x-5-8 i)(x-5+8 i)=\left(x^{2}+10 x-56\right)\left(x^{2}-10 x+89\right)=$ $=x^{4}-67 x^{2}+1450 x-4984$.

Answer: $\quad x^{4}-67 x^{2}+1450 x-4984$.

