Answer on Question \#42521 - Math - Algebra

Problem.

Use the Rational Zeros Theorem to write a list of all potential rational zeros
$f(x)=x 3-10 x 2+4 x-24$

Solution.

$$
f(x)=x^{3}-10 x^{2}+4 x-24
$$

The Rational Zeros Theorem states:
If $f(x)$ is a polynomial with integer coefficients and if $\frac{p}{q}$ is a zero of $f(x)$, then p is a factor of the constant term of $f(x)$ and q is a factor of the leading coefficient of $f(x)$.
The constant term of $f(x)$ is -24 and the leading coefficient of $f(x)$ is 1 . As the leading coefficient equals 1 , we have to consider only the factors of constant term, they will actually form a list of all potential rational zeros. They are $1,-1,2,-2,3,-3,4,-4,6,-6,8,-8,12,-12,24,-24$.
Answer: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$.

