Answer on Question \#42516 - Math - Algebra

Use the Rational Zeros Theorem to write a list of all possible rational zeros of the function.

Show work please and explanation.

Solution

Let $f(x)=3 x^{3}+39 x^{2}+39 x+27$.
According to Rational Zeros Theorem, if a polynomial function, written in descending order of the exponents, has integer coefficients, then any rational zero must be of the form $\pm p / q$, where p is a factor of the constant term and q is a factor of the leading coefficient.

In our case, constant term = 27, leading coefficient $=3$, so
$q=1,3$,
$p=1,3,9,27$,
and all possible rational zeros (roots) are $1,-1, \frac{1}{3},-\frac{1}{3}, 3,-3,9,-9,27,-27$.

