Answer on Question 42507, Math, Calculus

It is obvious, that the given sequence might be rewritten as $2^4 \cdot 3^1$, $2^3 \cdot 3^0$, $2^2 \cdot 3^{-1}$, $2^1 \cdot 3^{-2}$... Thus, general formula for nth term is $a_n = 2^{4-n} 3^{-(n-1)}$, or $a_n = 48 \cdot \frac{1}{6^n}$. This sequence converges, because it is a geometric progression with $q = \frac{1}{6}$, multiplied by 48. Thus, the sum is

$$S = 48 \cdot \frac{1}{1 - \frac{1}{6}} = \frac{288}{5} \quad .$$