Answer on Question 42507, Math, Calculus

It is obvious, that the given sequence might be rewritten as $2^{4} \cdot 3^{1}, 2^{3} \cdot 3^{0}, 2^{2} \cdot 3^{-1}, 2^{1} \cdot 3^{-2} \ldots$. Thus, general formula for nth term is $a_{n}=2^{4-n} 3^{-(n-1)}$, or $a_{n}=48 \cdot \frac{1}{6^{n}}$. This sequence converges, because it is a geometric progression with $q=\frac{1}{6}$, multiplied by 48 . Thus, the sum is $S=48 \cdot \frac{1}{1-\frac{1}{6}}=\frac{288}{5}$.

