## Answer on Question \#42499- Math - Abstract Algebra

## Question:

Use mathematical induction to prove the statement is true for all positive integers n .

The integer $n 3+2 n$ is divisible by 3 for every positive integer $n$.

## Solution:

Basis: Show that the statement holds for $\mathrm{n}=1$.

$$
n^{3}+2 n=1^{3}+2 * 1=3 .
$$

3 is divisible by 3 , so the statement holds for $\mathrm{n}=1$.

Inductive step: Show that if the statement holds for $\mathrm{n}=\mathrm{k}$, then also the statement holds for $\mathrm{n}=\mathrm{k}+1$.
Assume that $k^{3}+2 k$ is divisible by 3 (for some unspecified value of k ). It must then be shown that $(k+1)^{3}+2(k+1)$ is divisible by 3 too, that is:

$$
\begin{gathered}
(k+1)^{3}+2(k+1)=k^{3}+3 k^{2}+3 k+1+2 k+2=k^{3}+2 k+3 k^{2}+3 k+3 \\
=\left(k^{3}+2 k\right)+3 k^{2}+3 k+3=\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right)
\end{gathered}
$$

It can be easily seen that $\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right)$ is divisible by 3 . It is because the first term ( $k^{3}+2 k$ ) is divisible by 3 according to the inductive step. And the second term is divisible by 3 , because it is a product of 3 and some integer number.

