Let $\boldsymbol{u}=(-3,4), \boldsymbol{v}=(8,2)$.
Find $\boldsymbol{u}+\boldsymbol{v}$.
Given two vectors $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ in the Euclidean plane, the sum is given by:

$$
\overrightarrow{\boldsymbol{u}+\boldsymbol{v}}=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)
$$

In other words, vector addition is just like ordinary addition: component by component.

Notice that if you add together two 2-dimensional vectors you must get another 2-dimensional vector as your answer. Addition of 3-dimensional vectors will yield 3-dimensional answers. 2- and 3-dimensional vectors belong to different vector spaces and cannot be added. These same rules apply when we are dealing with scalar multiplication.

Thus,

$$
\begin{gathered}
\overrightarrow{\boldsymbol{u}+\boldsymbol{v}}=(-3+8,4+2) \\
\overrightarrow{\boldsymbol{u}+\boldsymbol{v}}=(5,6)
\end{gathered}
$$

Answer: $\overrightarrow{\boldsymbol{u}+\boldsymbol{v}}=(5,6)$

