

Answer on Question #42416 – Math – Analytic Geometry

Find $\mathbf{a} \cdot \mathbf{b}$.

$$\mathbf{a} = 10\mathbf{i} + 9\mathbf{j}, \mathbf{b} = 4\mathbf{i} + 3\mathbf{j}$$

what do \mathbf{i} have to do with the \mathbf{i} .

Solution

\vec{i} and \vec{j} are the unit vectors of the X and Y axes. They are perpendicular. So,

$$\vec{i} \cdot \vec{i} = 1, \quad \vec{j} \cdot \vec{j} = 1, \quad \vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{i} = 0.$$

The scalar product of the vectors \vec{a} and \vec{b} is

$$\begin{aligned} \vec{a} \cdot \vec{b} &= (10\vec{i} + 9\vec{j}) \cdot (4\vec{i} + 3\vec{j}) = 10 \cdot 4 \cdot (\vec{i} \cdot \vec{i}) + 10 \cdot 3 \cdot (\vec{i} \cdot \vec{j}) + 9 \cdot 4 \cdot (\vec{j} \cdot \vec{i}) + 9 \cdot 3 \cdot (\vec{j} \cdot \vec{j}) = \\ &= 40 \cdot 1 + 30 \cdot 0 + 36 \cdot 0 + 27 \cdot 1 = 67. \end{aligned}$$

Answer: 67.