Answer on Question \#42415 - Math - Analytic Geometry

The scalar product is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors) and returns a single number.

The dot product of two vectors $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ is defined as:

$$
\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

In our case,

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}
$$

We have $\mathbf{a}=(2,4), \mathbf{b}=(2,5)$. Find $\mathbf{a} \cdot \mathbf{b}$:

$$
\mathbf{a} \cdot \mathbf{b}=2 \cdot 2+4 \cdot 5=24
$$

Answer: $\mathbf{a} \cdot \mathbf{b}=24$.

