Answer on Question \#42400 - Math - Geometry

Solve the triangle.
$A=33^{\circ}, a=19, b=14$
Can this solved how ?

Solution:

$\mathrm{A}=33^{\circ}, \mathrm{a}=19, \mathrm{~b}=14$
Solving the triangle means to finding missing sides and angles (side c , angles C and B) Law of Sines (the Sine Rule):

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B} \\
\sin B=\frac{b}{a} \sin A=\frac{14}{19} \cdot \sin 33^{\circ} \Rightarrow B=\arcsin \left(\frac{b}{a} \sin A\right)= \\
=\arcsin \left(\frac{14}{19} \cdot \sin 33^{\circ}\right)=24^{\circ} \\
\text { or } B=180^{\circ}-\arcsin \left(\frac{14}{19} \cdot \sin 33^{\circ}\right)=156^{\circ}
\end{gathered}
$$

Thus, we must consider two cases : $B=24^{\circ}$ and $B=156^{\circ}$

$$
\# 1\left(B=24^{\circ}\right)
$$

The angles always add to 180° : when you know two angles you can find the third:

$$
A+B+C=180^{\circ}
$$

$$
\mathrm{C}=180^{\circ}-\mathrm{A}-\mathrm{B}=180^{\circ}-33^{\circ}-24^{\circ}=123^{\circ}
$$

To find side c we can use law of sines again, but with side c and angle C :

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{c}{\sin C} \\
c=\frac{\sin \mathrm{C}}{\sin \mathrm{~A}} \mathrm{a}=19 \cdot \frac{\sin \left(123^{\circ}\right)}{\sin \left(33^{\circ}\right)}=29 \\
\# 2\left(\boldsymbol{B}=\mathbf{1 5 6 ^ { \circ }}\right)
\end{gathered}
$$

The angles always add to 180° : when you know two angles you can find the third:

$$
\begin{gathered}
\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ} \\
\mathrm{C}=180^{\circ}-\mathrm{A}-\mathrm{B}=180^{\circ}-33^{\circ}-156^{\circ}=-9^{\circ}
\end{gathered}
$$

Angle can not be negative, so the second case is not possible.

Answer: $\mathrm{B}=24^{\circ}, \mathrm{C}=123^{\circ}, \mathrm{c}=29$.

