Question:

Identify the maximum and minimum values of the function $y=8 \cos x$ in the interval $[-2 \pi, 2 \pi]$. Use your understanding of transformations, not your graphing calculator.

Solution (I way):

As we know the maximum and minimum values of the function $y=\cos x$ in the interval $[-2 \pi, 2 \pi]$ are $M=1$ and $m=-1$ respectively.

Hence,

$$
\begin{gathered}
\max _{x \in[-2 \pi, 2 \pi]} y=\max _{x \in[-2 \pi, 2 \pi]} 8 \cos x=8 * \max _{x \in[-2 \pi, 2 \pi]} \cos x=8 * 1=8 \\
\text { and } \\
\min _{x \in[-2 \pi, 2 \pi]} y=\min _{x \in[-2 \pi, 2 \pi]} 8 \cos x=8 * \min _{x \in[-2 \pi, 2 \pi]} \cos x=8 *(-1)=-8
\end{gathered}
$$

Solution (II way):

As we know the maximum and minimum values of the function $y=\cos x$ in the interval $[-2 \pi, 2 \pi]$ are 1 and -1 respectively. Since, graph of $y=8 \cos x$ is vertical stretch by a factor of 8 units, of graph $y=\cos x$, so the maximum and minimum values of the function $y=\cos x$ in the interval $[-2 \pi$, 2π] are 8 and -8 respectively.

Answer: $\max _{x \in[-2 \pi, 2 \pi]} y=8, \min _{x \in[-2 \pi, 2 \pi]} y=-8$.

