

Answer on Question#42374 - Math - Multivariable Calculus

Show that the function $F(x, y) = (e^{xy}, \ln x)$ is locally invertible at $(1, 3)$.

Solution:

The function $F(x, y)$ is locally invertible at $(1, 3)$ if exists $F^{-1}(x, y)$ and uniquely defined $F(x, y)$ at $(1, 3)$.

Let us find $F^{-1}(x, y)$:

if $F(x, y) = (a, b)$, so $F^{-1}(a, b) = (x, y)$.

in our case, $a = e^{xy}$, $b = \ln x$;

so,

$$x = e^b;$$

$$xy = \ln a;$$

$$y = \ln a / e^b$$

The inverse function is:

$$F^{-1}(a, b) = (x, y) = (e^b, \ln a / e^b)$$

$$\text{So, } F(1, 3) = (e^{1*3}, \ln 1) = (e^3, 0)$$

$$F^{-1}(1, 3) = (e^3, \ln 1 / e^3) = (e^3, 0)$$

$F(1, 3)$ and $F^{-1}(1, 3)$ exist and are uniquely defined, so the function $F(x, y) = (e^{xy}, \ln x)$ is locally invertible at $(1, 3)$.