Answer on question 42307 - Math - Linear Algebra

Let

$$
A=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)
$$

a) Find the adjoint of A. Find the inverse of A from the $\operatorname{adjoint~of~} A$.
b) Find the characteristic and minimal polynomials of A. Hence find its eigenvalues and eigenvectors.
c) Why is A diagonalisable? Find a matrix P such that $P^{\wedge}(-1) A P$ is diagonal.
d) Verify Cayley-Hamilton theorem for A. Hence, find the inverse of A.

Solution

a) Adjoint matrix is the matrix formed by taking the transpose of the cofactor matrix of a given original matrix. To find it we need to find the following determinants

$$
\begin{aligned}
& A_{11}=(-1)^{1+1}\left|\begin{array}{cc}
7 & -6 \\
12 & -11
\end{array}\right|=-77+72=-5 \\
& A_{12}=(-1)^{1+2}\left|\begin{array}{cc}
6 & -6 \\
12 & -11
\end{array}\right|=66-72=-6 \\
& A_{13}=(-1)^{1+3}\left|\begin{array}{cc}
6 & 7 \\
12 & 12
\end{array}\right|=72-84=-12 \\
& A_{21}=(-1)^{2+1}\left|\begin{array}{cc}
4 & -4 \\
12 & -11
\end{array}\right|=44-48=-4 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
5 & -4 \\
12 & -11
\end{array}\right|=-55+48=-7 \\
& A_{23}=(-1)^{2+3}\left|\begin{array}{cc}
5 & 4 \\
12 & 12
\end{array}\right|=-60+48=-12 \\
& A_{31}=(-1)^{3+1}\left|\begin{array}{cc}
4 & -4 \\
7 & -6
\end{array}\right|=-24+28=4 \\
& A_{32}=(-1)^{3+2}\left|\begin{array}{cc}
5 & -4 \\
6 & -6
\end{array}\right|=30-24=6 \\
& A_{12}=(-1)^{3+3}\left|\begin{array}{ll}
5 & 4 \\
6 & 7
\end{array}\right|=35-24=11
\end{aligned}
$$

Therefore

$$
\operatorname{adj} A=\left(\begin{array}{ccc}
-5 & -4 & 4 \\
-6 & -7 & 6 \\
-12 & -12 & 11
\end{array}\right)
$$

Using the triangle rule we find the determinant of A

$$
\begin{aligned}
\operatorname{det}(A)= & \left|\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right|=5 *-7 *(-11)+6 * 12 *(-4)+4 * 12 *(-6)- \\
& -(12 * 7 *(-4)+6 * 4 *(-11)+12 *(-6) * 5)=-1 .
\end{aligned}
$$

Using the formula

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} * \operatorname{adj} A
$$

We obtain

$$
A^{-1}=-1\left(\begin{array}{ccc}
-5 & -4 & 4 \\
-6 & -7 & 6 \\
-12 & -12 & 11
\end{array}\right)=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)
$$

b) The characteristic polynomial of the matrix is

$$
\begin{gathered}
P(x)=\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x-5 & -4 & 4 \\
-6 & x-7 & 6 \\
-12 & -12 & x+11
\end{array}\right|=(x-5)(x-7)(x+11)+ \\
+288+288+48(x-7)-24(x+11)+72(x-5)= \\
=x^{3}-x^{2}-x+1=(x-1)^{2}(x+1)
\end{gathered}
$$

Thus the distinct eigenvalues of A are -1 and 1 . Since m_{A} divides $P(x)$ and every eigenvalue of A is a root of m_{A}, we must have that $m_{A}(x)=x^{2}-1$ or $m_{A}(x)=(x-1)^{2}(x+1)$. To check which of these works, we start with the one of the smallest degree:

$$
\begin{gathered}
A^{2}-I=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)-\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)= \\
=\left(\begin{array}{ccc}
25+24-48 & 20+28-48 & -20-24+44 \\
30+42-72 & 24+49-72 & -24-42+66 \\
60+72-132 & 48+84-132 & -48-72+121
\end{array}\right)-\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Hence the minimal polynomial of A is $m_{A}(x)=x^{2}-1$.
As we said before the eigenvalues of A are -1 and 1 with algebraic multiplicity is 2 .
Let us find the eigenvectors

1) $x=-1$:

$$
\left(\begin{array}{ccc}
6 & 4 & -4 \\
6 & 8 & -6 \\
12 & 12 & -10
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right)
$$

2) $x=1$:

$$
\left(\begin{array}{ccc}
4 & 4 & -4 \\
6 & 6 & -6 \\
12 & 12 & -12
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
c_{2}-c_{1} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

Where c_{1} and c_{2} are constants which are not equal to zero at the same time. So we get

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \text { or }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

c) Use the Theorem: An $\mathrm{n} \times \mathrm{n}$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
Check whether the eigenvectors of A are linearly independent. For it find the determinant of the matrix consisted with these vectors

$$
\left|\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & 1 \\
6 & 1 & 0
\end{array}\right|=-3+6-2=1
$$

Therefore the eigenvectors of A are linearly independent and the matrix A is diagonalizable.
P is the matrix that consists of the eigenvectors. Check it

$$
\begin{gathered}
P^{-1} A P=\left(\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & 1 \\
6 & 1 & 0
\end{array}\right)^{-1}\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & 1 \\
6 & 1 & 0
\end{array}\right)= \\
=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
6 & 6 & -5 \\
3 & 4 & -3
\end{array}\right)\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & 1 \\
6 & 1 & 0
\end{array}\right)= \\
=\left(\begin{array}{ccc}
1 & 1 & 1 \\
6 & 6 & -5 \\
3 & 4 & -3
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & 1 \\
6 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

d) The Cayley-Hamilton theorem states that "substituting" the matrix A for λ in this polynomial results in the zero matrix

$$
\begin{gathered}
P(A)=A^{3}-A^{2}-A+1=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)^{3}-\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)^{2}- \\
-\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)- \\
-\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

So the Theorem holds.
As we know

$$
A A^{-1}=I
$$

As we could notice $A^{2}=I$ therefrom $A=A^{-1}$.

