Answer on Question \#42285-Math-Real Analysis

Let $S \subseteq R$ be non-empty. Prove that if a number u in R has the properties (i) for every $n \in N$ the number $u-1 / n$ is not an upper bound of S, and (ii) for every number $n \in N$ the number $u+1 / n$ is upper bound S, then
u=sup S.

Solution

1) Let's prove the first part.

Assume that there is some $n \in N$ such that $\left(u-\frac{1}{n}\right)$ is an upper bound of S.

By the definition supremum is the lowest upper bound. But easy to see that $\left(u-\frac{1}{n}\right)<u$ and thus u isn't the lowest bound.

So it's not true that there is some $n \in N$ such that $\left(u-\frac{1}{n}\right)$ is an upper bound of S.
It means that for every number $n \in N$ the number $\left(u-\frac{1}{n}\right)$ is not an upper bound of S.
2) Let's prove the second part.

For any $x \in S$ it's true that $x \leq u$, because $u=\sup S$.
At the same time for any $n \in N$ it's true that $u<u+\frac{1}{n}$.
So we have for any $x \in S$: $x \leq u<u+\frac{1}{n}$. From the transitivity of real numbers $x<u+\frac{1}{n}$.
Thus for any $n \in N\left(u+\frac{1}{n}\right)$ is greater than any element of S, which means that $\left(u+\frac{1}{n}\right)$ is an upper bound.

