Answer on Question \#42266 - Math - Statistics and Probability

It is not known whether a coin is fair or unfair. If the coin is fair, the probability of a tail is 0.5 , but if the coin is unfair, the probability of a tail is 0.1 . If the probability of a fair coin is 0.8 and the probability of an unfair coin is 0.2 , the coin is tossed once, and a tail is the result:

1. What is the probability that the coin is fair?
2. What is the probability that the coin is unfair?

Solution

Let the event 'fair coin' by designated A_{1} and the event 'unfair coin' by A_{2}. Then the given information be put as under:

$$
\begin{gathered}
\left\{\begin{array}{l}
P\left(A_{1}\right)=0.8 \\
P\left(A_{2}\right)=0.2
\end{array}\right. \text { A prior (or unconditional) probabilities. } \\
\left\{\begin{array}{l}
P\left(\text { tail } \mid A_{1}\right)=0.5 \\
P\left(\text { tail } \mid A_{2}\right)=0.1
\end{array}\right. \text { Conditional probabilities. } \\
\left\{\begin{array}{c}
P\left(\text { tail and } A_{1}\right)=P\left(A_{1}\right) \cdot P\left(\text { tail } \mid A_{1}\right)=0.8 \cdot 0.5=0.4 \\
P\left(\text { tail and } A_{2}\right)=P\left(A_{2}\right) \cdot P\left(\text { tail } \mid A_{2}\right)=0.2 \cdot 0.1=0.02
\end{array}\right. \text { Joint probabilities. }
\end{gathered}
$$

A tail can occur in combination with 'fair coin' or in combination with 'unfair coin'. The probability of the former is 0.4 and of the latter it is 0.02 . The sum of the probabilities would result in the unconditional probability of a tail on the first toss i.e.,

$$
P(\text { tail })=0.4+0.02=0.42
$$

Thus if a tail occurs and if it is not known whether the coin tossed once is fair or unfair coin, then the probability of its being a fair coin is:

$$
P\left(A_{1} \mid \text { tail }\right)=\frac{P\left(\text { tail and } A_{1}\right)}{P(t a i l)}=\frac{0.4}{0.42}=0.95
$$

This is the posterior (or revised) probability of a fair coin (or A_{1}) given that tail is the result in the first toss of a coin obtained through Bayes's Rule.

We can similarly calculate the posterior probability of a unfair coin (or A_{2}) given that tail is the result in the first toss and it can be shown as follows:

$$
P\left(A_{2} \mid t a i l\right)=\frac{P\left(\text { tail and } A_{2}\right)}{P(\text { tail })}=\frac{0.02}{0.42}=0.05 .
$$

Thus the revised probabilities after one toss when the toss results in tail are 0.95 of a fair coin and 0.05 of an unfair coin.

Answer: 1. 0.95; 2. 0.05.

