Problem. Using Regula Falsi method approximates the root of the following equation upto four decimal places.

$$
x=e^{-x}
$$

Solution. Let $f(x)=x-e^{-x}$. The function $f(x)$ has the root in the interval $(0,1)$ by Intermediate-Value Theorem, as $f(0)=-1<0$ and $f(1)=1-\frac{1}{s}>0$. Let $a_{1}=0$ and $b_{1}=1$. By Regula Falsi method

$$
c_{1}=b_{1}-\frac{f\left(b_{1}\right)\left(b_{1}-a_{1}\right)}{f\left(b_{1}\right)-f\left(a_{1}\right)}=0.612699837
$$

$f\left(c_{1}\right)=0.070813948>0$, so $a_{2}=a_{1}$ and $b_{2}=c_{1}$.

$$
c_{2}=b_{2}-\frac{f\left(b_{2}\right)\left(b_{2}-a_{2}\right)}{f\left(b_{2}\right)-f\left(a_{2}\right)}=0.572181412 .
$$

$f\left(c_{2}\right)=0.007888273>0$, so $a_{3}=a_{2}$ and $b_{3}=c_{2}$.

$$
c_{3}=b_{3}-\frac{f\left(b_{3}\right)\left(b_{3}-a_{3}\right)}{f\left(b_{3}\right)-f\left(a_{3}\right)}=0.567703214
$$

$f\left(c_{3}\right)=0.000877392>0$, so $a_{4}=a_{3}$ and $b_{4}=c_{3}$.

$$
c_{4}=b_{4}-\frac{f\left(b_{4}\right)\left(b_{4}-a_{4}\right)}{f\left(b_{4}\right)-f\left(a_{4}\right)}=0.567205553
$$

$f\left(c_{4}\right)=0.000097572>0$, so $a_{5}=a_{4}$ and $b_{5}=c_{4}$.

$$
c_{5}=b_{5}-\frac{f\left(b_{5}\right)\left(b_{5}-a_{5}\right)}{f\left(b_{5}\right)-f\left(a_{5}\right)}=0.567150214
$$

$f\left(c_{5}\right)=0.000010850>0$, so $a_{6}=a_{5}$ and $b_{6}=c_{5}$.

$$
c_{6}=b_{5}-\frac{f\left(b_{6}\right)\left(b_{6}-a_{6}\right)}{f\left(b_{6}\right)-f\left(a_{6}\right)}=0.56714406
$$

$\left|c_{6}-c_{5}\right|<0.0001$, so the root $x^{*} \approx 0.5671$.
Answer. $x^{*} \approx 0.5671$.

