Answer on Question \#42258 - Math - Linear Algebra

The roots of the following equation are 5.8210, 1.6872 and -5090 . Using Muller method approximates the root 5.8210 upto four decimal places.

$$
f(x)=x^{3}-7 x^{2}+6 x+5
$$

Solution. There is the mistake in the problem statement. The third root should be -0.5090 , instead of -5090 . Let $x_{1}=5, x_{2}=6, x_{3}=5.8210$. Easy to obtain that

$$
\begin{gathered}
f\left(x_{1}\right)=-15, f\left(x_{2}\right)=5, f\left(x_{3}\right)=-0.023284339 \\
f\left[x_{3}, x_{2}\right]=\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}=28.063041, f\left[x_{3}, x_{1}\right]=\frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}}=18.242041 \\
p_{2}=f\left[x_{3}, x_{2}, x_{1}\right]=\frac{f\left[x_{3}, x_{2}\right]-f\left[x_{3}, x_{1}\right]}{x_{2}-x_{1}}=9.821 \\
2 p_{1}=f\left[x_{3}, x_{2}\right]+f\left[x_{3}, x_{2}, x_{1}\right]\left(x_{3}-x_{2}\right)=26.305082 .
\end{gathered}
$$

By Muller method approximation parabola

$$
\begin{aligned}
p(x)=f\left(x_{3}\right) & +2 p_{1}\left(x-x_{3}\right)+p_{2}\left(x-x_{3}\right)^{2} \\
& =-0.023284339+26.305082\left(x-x_{3}\right)+9.821\left(x-x_{3}\right)^{2}
\end{aligned}
$$

and

$$
x_{4}=5.821884873 .
$$

Hence, the solution $x^{*} \approx 5.8218$.
Answer. $x^{*} \approx 5.8218$.

